BAR[pUR ‘suIaned ‘TN Suisn
SurauSuy dIeM]JOg PIJUILI)-193[q()

Outline

v’ Scenarios (Lecture Requirements Elicitation)
v Finding Scenarios
v Identifying actors

» Use Cases
e Finding Use Cases
 Flow of Events
 Use Case Associations
 Use Case Refinement

e Summary

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Scenario example from Tuesday’ slecture:
Warehouse on Fire

Bob, driving down main street in his patrol car notices smoke
coming out of a warehouse. His partner, Alice, reports the
emergency from her car.

Alice enters the address of the building into her wearable
computer , a brief description of its location (i.e., north west
corner), and an emergency level.

She confirms her input and waits for an acknowledgment.

John, the dispatcher, is alerted to the emergency by a beep of

his workstation. He reviews the information submitted by Alice

and acknowledges the report. He allocates a fire unit and sends
the estimated arrival time (ETA) to Alice.

Alice received the acknowledgment and the ETA.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Observations about Warehouse on Fire
Scenario

e Concrete scenario

e Describes a single instance of reporting a fire
incident.

* Does not describe all possible situations in which a
fire can be reported.

e Participating actors
 Bob, Alice and John

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

er Scenarios Possibilities for an Incident

What ne
incident?

Who is involvedNin reporting the incident?
What does the sys do, if no police cars are

reports “Cat in the Tree” and “Warehowse on Fire?”

After the scenarios are formulated

* Find all the scenarios that specify how to report a
fire and model them in a use case

« Then add more detail to each of these use cases by
describing:
1.Name of the use case
2.Participating actors
3.Describe the entry condition
4.Describe the flow of events
5.Describe the exit condition

6.Describe exceptions
7.Describe quality requirements (nonfunctional requirements).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Use Case Model for Incident Management

<<initiates>>

<<initiates>>
<<initiates>> <:::::::::>
Fie1d0ff;:;;\\\\\\\ ///////////’Dispatcher OpenIncident

ReportEmergency

D

AllocateResources

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

How to find Use Cases

e Select a narrow vertical slice of the system (i.e. one
scenario)

« Discuss it in detail with the user to understand the user’s
preferred style of interaction

o Select a horizontal slice (i.e. many scenarios) to
define the scope of the system.

» Discuss the scope with the user

o Use illustrative prototypes (mock-ups) as visual
support

 Find out what the user does
» Task observation (Good)
* Questionnaires (Bad)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Use Case Example: ReportEmergency

U1

. Use case name: ReportEmergency
. Participating Actors:

Field Officer(initiate), Dispatcher

. Entry Condition:

The FieldOfficer is logged into the FRIEND System

. Flow of Events: on next slide
. Exit Condition:

The FieldOfficer has received an acknowledgement and the selected
response OR The FieldOfficer has received an explanation
indicating why the transaction could not be processed

. Exceptions:

* The FieldOfficer is notified immediately if the connection between
terminal and central is lost

. Quality Requirements:

« The FieldOfficer’ s report is acknowledged within 30 seconds.

Use Case Example: ReportEmergency (cid)

1. The FieldOfficer activates the “Report Emergency” function of

her terminal. The system responds by presenting a form to the
officer.

2. The FieldOfficer fills the form, by selecting the emergency level,
type, location, and brief description of the situation. The
FieldOfficer also describes a response to the emergency situation.
Once the form is completed, the FieldOfficer submits the form,
and the Dispatcher is notified.

3. The Dispatcher creates an Incident in the database by invoking
the Openlncident use case. He selects a response and
acknowledges the report.

4. The FieldOfficer receives the acknowledgment and the selected
response.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Order of steps when formulating use cases

 First step: Name the use case
 Use case name: ReportEmergency

« Second step: Find the actors

e Generalize the concrete names from the scenario to
participating actors

e Participating Actors:
» Field Officer (Bob and Alice in the Scenario)
e Dispatcher (John in the Scenario)
 Third step: Concentrate on the flow of events
« Use informal natural language

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Another Use Case Example

« The Bank Customer specifies a Account and provides
credentials to the Bank proving that he is authorized
to access the Bank Account

e The Bank Customer specifies the amount of money
he wishes to withdraw

» The Bank checks if the amount is consistent with the
rules of the Bank and the state of the Bank
Customer’ s account. If that is the case, the Bank
Customer receives the money in cash.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Use Case Attributes

Name Withdraw Money Using ATM

Bank Customer

Bank Customer has opened a Bank Account with the

Bank and
Bank Customer has received an ATM Card and PIN

Bank Customer has the requested cash or

Bank Customer receives an explanation from the ATM
about why the cash could not be dispensed.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Flow of Events: A Request-Response Interaction
between Actor and System

1.The Bank Customer inserts the

card into the ATM 2.The ATM requests the input of a

four-digit PIN

3. The Bank Customer types in PIN
4. If several accounts are recorded on
the card, the ATM offers a choice of the
account numbers for selection by the
Bank Customer

5. The Bank Customer selects an _
account 6.If only one account is recorded on

the card or after the selection, the ATM
requests the amount to be withdrawn

7. The Bank Customer inputs an

amount 8.The ATM outputs the money and a
receipt and stops the interaction.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Use Case Exceptions

Actor steps

1.The Bank Customer inputs
her card into the ATM.
[Invalid card]

3.The Bank Customer types in
PIN. [Invalid PIN]

5. The Bank Customer selects
an account .

7. The Bank Customer inputs
an amount. [Amount over
limit]

[Invalid card]
The ATM outputs the card and
stops the interaction.

[Invalid PIN]

The ATM announces the failure
and offers a 2nd try as well as
canceling the whole use case.
After 3 failures, it announces the
possible retention of the card.
After the 4th failure it keeps the
card and stops the interaction.

[Amount over limit]
The ATM announces the failure
and the available limit and offers a
second try as well as canceling the
whole use case.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

From Use Cases to Objects

@ Top Level Use Case

Level 2 Use Cases
Level 3 Use Cases

Operations

A and B
are called
Rarticipating
Obhjects

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Use Cases used by more than one Object

Top Level Use Case

Level 2 Use Cases

Level 3 Use Cases

Operations

Participating
Objects

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Guidelines for Formulation of Use Cases (1)

e Name
 Use a verb phrase to name the use case

« The name should indicate what the user is trying to
accomplish

« Examples:

« "Request Meeting”, “Schedule Meeting”,
Alternate Date”

e Length

e A use case description should not exceed 1-2 pages. If
longer, use include relationships

* A use case should describe a complete set of interactions.

Propose

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Guidelines for Formulation of Use Cases (2)

Flow of events:

 Use the active voice. Steps should start either with
“The Actor” or “The System ...”

 The causal relationship between the steps should be
clear

o All flow of events should be described (not only the
main flow of event)

« The boundaries of the system should be clear.
Components external to the system should be

described as such
e Define important terms in the glossary.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Event Flow: Use Indentation to show the
Interaction between Actor and System

1.The Bank Customer inserts the card into the ATM

2.The ATM requests the input of a four-digit PIN

3. The Bank Customer types in PIN

4. If several accounts are recorded on the card, the ATM offers a
choice of the account numbers for selection by the Bank Customer

5. The Bank Customer selects an account

6.If only one account is recorded on the card or after the selection,
the ATM requests the amount to be withdrawn

7. The Bank Customer inputs an amount

8.The ATM outputs the money and a receipt and stops the
interaction.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Use Case Associations

« Dependencies between use cases are represented
with use case associations
o Associations are used to reduce complexity
e Decompose a long use case into shorter ones
» Separate alternate flows of events
» Refine abstract use cases

» Types of use case associations

e Includes

e Extends
 Generalization

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

<<include>>: Functional Decomposition

 Problem:
e A function in the original problem statement is too complex

e Solution:

» Describe the function as the aggregation of a set of simpler
functions. The associated use case is decomposed into shorter

use cases
<:::::::::::> ManageIncident

S D O

CreatelIncident HandleIncident CloselIncident

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

<<include>>: Reuse of Existing Functionality

e Problem: There are overlaps among use cases. How
Cﬁn we reuse flows of events instead of duplicating
them?

e Solution: The includes association from use case A to
use case B indicates that an instance of use case A
performs all the behavior described in use case B (“A
delegates to B”)

» Example: Use case "ViewMap” describes behavior that
can be used by use case “Openlncident” (“ViewMap”
is factored out)

© <<include>>

O OpenInc1 dent

V1ewMa 0
Base Use P
Case <<include>>

AllocateResources Use Case

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Supplier

<<extend>> Association for Use Cases

 Problem: The functionality in the original problem
statement needs to be extended.

e Solution: An extend association from use case A to
use case B

« Example: “ReportEmergency” is complete by itself,
but can be extended by use case “Help” for a scenario
in which the user requires help

FieldOfficer\

< <extepc=>

4,

Report
Emergency

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Generalization in Use Cases

 Problem: We want to factor out common (but not
identical) behavior.

e Solution: The child use cases inherit the behavior and
meaning of the parent use case and add or override
some behavior.

« Example: “ValidateUser” is responsible for verifying the
identity of the user. The customer mlght require two

realizations: “CheckPassword” and “CheckFingerprint”

Child

)
® Use Case

CheckPassword
‘.

Parent

C ValidateUser
ase

CheckFingerprint

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

